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Abstract. We propose an unstructured mesh redistribution method without using skewed 
elements for steady-state problems. The regions around solution features are indicated by a 
sensor function. The medial axes of the strong feature regions are calculated so that ele-
ments can be clustered around the most important solution features efficiently. Two ap-
proaches, a discrete surface-based approach using a Delaunay triangulation method and a 
mathematical-representation approach using least square fitting, are shown to calculate the 
medial axes. Remeshing of an initial volume mesh is performed around the medial axes us-
ing an advancing front method and/or an advancing layer method. Two examples are shown 
to present how our approach works. 
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1. Introduction 

Computational fluid dynamics (CFD) has become a crucial tool for 
prediction and analysis of flow field within a domain, providing engineers 
with a reliable means of understanding complex flow patterns. However, 
in order to obtain accurate results for highly complex flow fields, meshes 
must be clustered near the areas where the solution gradients are high. This 
is an arduous task the engineer must perform prior to the completion of the 
calculation. The meshes can be clustered in two ways; either a very fine 
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mesh is generated, or some solution-based mesh clustering is performed. 
The first approach can be very expensive in terms of computational costs. 
Although surface meshes can be adapted geometrically based on surface 
curvature and local volume thickness [1], it is often difficult to choose ad-
aptation criteria for volume meshes before numerical simulations. The 
second approach can be achieved by mesh adaptation. 

There are three mesh adaptation approaches: mesh refinement/de-
refinement [2, 3], mesh redistribution [4] and the combination of these [5, 
6]. Since structured meshes are not flexible for adding or deleting nodes 
locally, the mesh redistribution approach is widely used to move nodes 
toward solution features while the connectively of the mesh is maintained. 

Although solution features are adapted by unstructured meshes rela-
tively easily, there are two issues needed to be addressed. One is the main-
tenance of valid elements. Hanging nodes can be created during a mesh re-
finement process. Local refinement of hybrid meshes for viscous flow 
simulations, which contain regular elements such as tetrahedra, prisms, 
pyramids and hexahedra, is difficult without creating low-quality elements 
to eliminate hanging nodes. To overcome this issue, an approach using 
generalized elements is promising [3]. 

The other issue is the quality of resulting refined meshes. Stretched 
elements may affect solution accuracy and cause a stiffness problem in 
numerical simulations. Mavriplis reports spanwise grid stretching, which 
is widely used in aircraft CFD simulations, may have substantial 
repercussions on overall simulation accuracy even at very high levels of 
resolution [7]. Since typical refinement and redistribution algorithms for 
unstructured meshes create highly stretched tetrahedra around solution 
features, the validation of the simulation process may be required. If a 
refined mesh does not have elements that have too small or too large 
angles even near solution features, we do not need to worry about these 
issues.

In this paper, we propose a solution-based redistribution method for un-
structured volume meshes. The structured mesh redistribution methods 
only allow nodes to move towards solution features, while maintaining the 
mesh connectivity. In our unstructured mesh redistribution method, a mesh 
is remeshed around the solution features detected. The main objective here 
is to extract strong solution features as smooth surfaces (Section 2.3) based 
on sensor values (Section 2.2) and then to create high quality elements 
around them (Section 2.4). The entire domain can be remeshed with the 
embedded surfaces using an advancing front method with tetrahedra and 
an advancing layer method with prisms or hexahedra if needed. Alterna-
tively, elements around the feature surfaces are removed from the initial 
volume mesh and only the resulting voids are remeshed to reduce 
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the required CPU time. Two examples are shown to present how our ap-
proach works (Section 4). 

2. Meshing Methods 

In this section, the methods for creating an initial mesh and redistributing 
nodes around solution feature surfaces are described. 

2.1. Surface/Volume Mesh Generation 

To generate surface meshes based on computer-aided design (CAD) de-
fined geometries, a direct advancing front method is employed [8]. A 
modified decimation method is used for image-based geometries [1]. 

Tetrahedral meshes are created using an advancing front method [9]. 
For viscous flow simulations, a modified advancing layer method is used 
for the near-field mesh generation [10], which is followed by tetrahedral 
mesh generation to fill the rest of the domain using the advancing front 
method. The quality of the tetrahedral elements are enhanced using angle-
based node smoothing, face swapping based on the Delaunay property, and 
removal of nodes that have an insufficient number of tetrahedra. A user 
can specify a stretching factor to control the mesh density. 

The hybrid mesh generation method can be used to create layered 
meshes on solution features discussed in the next section to create high 
quality anisotropic adaptive meshes. 

2.2. Feature Detection 

After a numerical simulation using an initial mesh, the next step is the de-
tection of solution features. The location of solution features is indicated 
by the weight function by Soni et al. [11] or the shock sensor by Lovely 
and Haimes [12]. The weight function is calculated based on the conserved 
variables and indicates the regions of important flow features. It is defined 
at each element as follows: 
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where Wk (k = 1, 2, 3), i

k
q  and qi are x, y and z components of normalized 

gradient, the kth component of the gradient calculated using ith variable and 
the average variable at the centroid of the element, respectively. The sym-
bol  represents the Boolean sum, which, for two variables q1 and q2, is 
defined as 

212121
qqqqqq (2)

The shock sensor is based on the fact that the normalized Mach number 
Mn = 1 at a shock. 
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where a, V and p  are the speed of sound, velocity vector and pressure 
gradient, respectively. 

2.3. Extraction of Solution Feature Surfaces 

To adapt high-quality elements around strong solution features, the next 
step is recognition of feature surfaces. Although this approach may need 
more meshing steps than a typical mesh redistribution method, much better 
quality elements can be generated around the solution feature surfaces. 
Marcum and Gaither propose a pattern recognition algorithm in 2D and 
mention the difficulty of extending it to 3D [13]. Although our approach 
needs user interaction during the process (to be discussed in Section 4), it 
enables feature surface extraction. 

The direct extraction of solution feature surfaces is difficult from the 
initial mesh and solution data. At least two steps are needed. First, regions 
around the solution features are specified by selecting a certain sensor 
value. Although elements can be subdivided in the entire regions, the 
number of elements in the resulting mesh may become too big. The re-
gions can be very thick if an initial volume mesh is coarse at the solution 
feature locations. To avoid this problem, the medial axis (also known as 
skeleton) of each region is extracted in the following step. Elements are 
clustered around the medial axes. 

Two approaches can be considered to extract solution feature surfaces. 
One is a discrete surface-based approach. A medial axis is extracted from a 
triangulated closed surface using Delaunay triangulation [14]. Triangulated 
isosurfaces at a certain sensor value can be calculated easily and robustly, 
which enclose regions around solution features. For example, the shock 
features are surrounded by the isosurfaces at Mn = 1. A Delaunay 
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tetrahedral mesh can be obtained from a triangulated isosurface. The center 
of the circumsphere of each tetrahedron is considered to represent the me-
dial axis. The quality of the resulting medial axes depends on the smooth-
ness of the isosurfaces. However, isosurfaces are not usually smooth, and 
they may have bumps and holes due to truncation errors in the entire simu-
lation process. User interaction is often required to fix the resulting sur-
faces.

The other approach is a mathematical-representation approach. A me-
dial axis can be estimated using least square fitting directly from the nodes 
on an isosurface. Least square fitting methods often minimize the vertical 
offsets from a surface function instead of the perpendicular offsets to sim-
plify an analytic form for the fitting parameters. Consequently, the least 
square fitting does not estimate the surface function well when the region 
defined by an isosurface is thick. Although a set of coordinates of nodes 
near a solution feature is needed as an input for a least square fitting 
method, the connectivity of the nodes is not required. Therefore, we define 
a solution feature as a set of nodes based on the following process: 
1. Select nodes of a volume mesh that have a certain range of sensor val-

ues.
2. Also select nodes that are one-ring neighbors of the nodes in Step 1 to 

eliminate noise due to truncation errors. 
3. Number each cluster of selected nodes, which can be defined as their 

connectivity, if the mesh has more than one solution features. 
4. Calculate distance from the closest boundary at each selected node. The 

boundary is represented by the selected nodes that have at least one un-
selected node as their one-ring neighbor. The distance is defined as the 
number of edges from the boundary. 

5. The nodes that have local maxima of the distance values are considered 
to form medial axes. 

The coordinates of the nodes in Step 5 are fitted to functions, such as a 
plane, quadric and cone, using a least square fitting method. Local mesh 
size can be considered to be the error range of a data point. The reciprocal 
of the local mesh size is used for weighing. Suppose that a cluster of se-
lected nodes xmj (j = 1, 2,…, nm) is fitted to a function z = f(x, y).
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where lj is the maximum edge length connected to node j. E should be 
minimized.

The resulting function should be trimmed to define a surface in the 
computational domain. 
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2.4. Remeshing with Embedded Surfaces 

Next step is to remesh the initial volume mesh (defined as V) around the 
medial axes created in the previous section. First, surface meshes (defined 
as S) are created on the medial axes based on user-specified mesh size. 
Second, elements of V are removed if they are close to S. Each node of S,
Si, should be in an element of V, Vi. A node of V, Vj, is removed if it is in a 
sphere defined at node Si (i = 1 to the number of nodes in S) with the radius 
of 3 max(lsi, lvi), where lsi is the maximum length of the edges connected to 
Si and lvi is the maximum length of the edges in Vi and if Vj is visible from 
Si (i.e., there is no boundary surface of V between Vj and Si). Third, the 
void regions around the medial axes are filled using the meshing method 
described in Section 2.1. 

The entire domain is remeshed with the embedded surfaces if a layered 
mesh is needed for no-slip walls or the shape of the outer boundary needs 
to be changed. 

3. Flow Solver 

The flow simulation system that is used for the current study is developed 
for a generalized grid framework, in which the discretization of the physi-
cal domain can be of structured, unstructured or an agglomeration of cells 
with an arbitrary number of faces (polytops) [15, 16]. The integral form of 
the Navier-Stokes equations is taken as the governing equations for the 
fluid flow. The spatial discretization of the governing equations is based 
on a cell-centered, finite volume upwind scheme. The convective fluxes at 
the cell-faces are evaluated using Roe’s approximate Riemann [17]. 
Higher-order accuracy in the spatial domain is achieved using a Taylor se-
ries expansion of flow variables. The gradients at the cell center for the 
Taylor series expansion is estimated using either the Gauss theorem to-
gether with a weighted averaging procedure or a least-square fit of the 
variables in the neighboring cells. The least-square system resulting from 
the later approach is solved using the Gram-Schmidt method. A limiter 
function is added to the Taylor’s series expansion to avoid the creation of 
local extrema during the reconstruction process. Limiters by Venka-
takrishnan [18], and Barth and Jesperson [19] are implemented in the gen-
eralized grid framework. 



A Solution-Based Adaptive Redistribution Method for Unstructured Meshes    153 

4. Applications 

In this section, two examples are shown to demonstrate and to discuss the 
solution-based mesh redistribution approach. 

4.1. NACA0012 Wing 

Figure 1a  shows a mesh around a NACA0012 wing (50k nodes). An in-
viscid flow simulation is carried out at a freestream Mach number of 0.799 
and an angle of attack, , of 2.26º. Figures 1b and 1c illustrate pressure 
coefficient (Cp) distribution and weight function value distribution based 
on Eq. 1; the results indicate a shock on the wing. 

 (a) (b) (c) 
Figure 1. NACA0012 wing: (a) a tetrahedral mesh; (b) Cp distribution (M = 0.799,  = 

2.26º); (c) weight function value distribution. 

In this example, the shock location is estimated using the discrete sur-
face-based approach based on Delaunay triangulation (Figure 2).  First, an 
isosurface of a weight function value of 0.2 is extracted and smoothed us-
ing Visualization Toolkit (VTK) [20] (Figure 2a). Second, the medial axis 
of the isosurface is calculated (Figure 2b).  The symmetry planes prevent 
creating a single medial axis. The medial axis is modified there manually 
(Figure 2c).  It is sometimes difficult to generate an expected medial axis 
as single surface using existing algorithms even if a solution feature is sim-
ple.

Once the feature surface is computed, the surface mesh generation algo-
rithm is applied to create a high quality mesh on it. Elements of the initial 
volume mesh, Vn0, near the solution feature are removed and the void is 
remeshed using the advancing front method. Figure 3b shows  the resulting 
volume mesh (110k nodes; Vn1). As a result, a high quality redistributed 
mesh is produced with alignment to the major flow feature.  Figure 3c
shows another redistributed volume mesh after the second simulation cycle 
(130k nodes; Vn2).
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 (a) (b) (c) 
Figure 2. Extraction of a flow feature: (a) isosurface of a weight function value of 0.2 at the 

shock location; (b) medial axis of the isosurface; and (c) modified medial axis. 

 (a) (b) (c) 
Figure 3. Redistributed volume meshes: (a) initial mesh (50k nodes); (b) redistribution #1 

(110k nodes) – elements around the shock are replaced with finer elements; (b) redistribu-

tion #2 (130k nodes). 

Figure 4  illustrates hybrid meshes for the same wing geometry to per-
form viscous flow simulations and Cp distribution. The shock location is 
estimated using the same approach from the initial hybrid  mesh  (Figure
4a), and then the entire domain is remeshed with the embedded surface 
(Figure 4b). To avoid creating skewed elements around the intersection 
between the wing upper surface and the embedded surface, the near-filed 
mesh around the wing is generated first. The embedded surface close to or 
within the near-field mesh is trimmed automatically, and then the rest of 
the domain is filled with tetrahedral elements. 

Figure 5 shows Cp distribution based on the redistributed mesh Vn1

(Figure 3b), a reference tetrahedral mesh (110k nodes; Figure 5b), the hy-
brid meshes (Figure 4), and an experimental result. The shock locations of 
the numerical results do not agree with that of the experimental data well. 
The viscous flow simulations give better result, but further investigation 
for the turbulence model is required. In the inviscid flow case, although the 
reference mesh has almost the same number of nodes as Vn1, it is not 
adapted to the shock feature. The redistributed mesh Vn1 represents the 
shock more clearly. In the viscous flow case, the redistributed mesh also 
represents the shock more clearly. 
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Figure 4. Hybrid meshes for the NACA0012 wing and Cp distribution (-1.0 to 1.0): (a) ini-

tial hybrid mesh; (b) redistributed hybrid mesh. 
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 (a) (b) 

Figure 5. Comparison of Cp distribution for the NACA0012 wing (M = 0.799,  = 2.26): 

(a) Cp distribution; (b) reference mesh (110k nodes). 

4.2. Capsule Model 

Figure 6  shows an initial tetrahedral mesh around a re-entry capsule model 
and Mach number distribution on a cross-section. The bow shock in front 
of the capsule becomes steady, but the flow solution is not fully con-
verged. The shape of the outer boundary is a hemisphere so that the mesh 
can be used for flows at different angles of attack. Isosurfaces of a certain 
weight function value can be extracted as triangulated surfaces (Figure
7a), the medial axes of which are considered to represent the most impor-
tant locations. An approach to obtain medial axes using a Delaunay trian-
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gulation method from the triangulated surfaces can be considered. How-
ever, it is difficult to obtain medial axes automatically as smooth surfaces 
as discussed in the previous example. Although the isosurfaces shown in 
Figure 7a  are smoothed using a Laplacian method, many holes and small 
features prevent extracting smooth medial axes. 

Figure 6. Initial mesh for a capsule model and Mach number distribution on a cross-section 

(M = 1.0-4.0). 

Figure 7. Flow features: (a) extracted isosurfaces at a weight function value of 0.05; (b) es-

timated features using a least square fitting method. 
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Figure 8. Flow features on the 

symmetry plane. 

Figure 9. Redistributed mesh for a capsule model 

and Mach number distribution on a cross-section 

(M = 1.0-4.0). 

The other approach using the least square fitting method is more appro-
priate in this case. After a user specifies one of the template functions, 
such as a cone, quadratic and quartic, and the z axis of the function, a cor-
responding medial axis is obtained as a mathematical function (Figure 7).
The bow shock in front of the capsule is fitted to a quadratic, and the shock 
from the aft of it is fitted to a cone. Figure 8  shows the obtained surfaces 
(Figure 7b) and the isosurfaces for reference  (Figure 7a) on the symmetry 
plane. The least square fitting method estimates the medial axes well. One 
of the disadvantages using unstructured meshes is that flow features di-
verge quickly. This approach enables us to estimate missing flow features. 

Figure 9  shows a redistributed mesh, which has 0.74 million nodes. In 
this case, the entire mesh is regenerated because the shape of the outer 
boundary is changed to remove extra elements. The initial mesh shown in 
Figure 6  can be used for cases at different angles of attack, but it has 0.89 
million nodes. In addition, the elements around the shocks in the far field 
are coarse. Figure 10  illustrates Mach number distribution on the symme-
try planes of the initial and redistributed meshes. Both flows are fully con-
verged. The initial mesh gives a carbuncle phenomenon on the bow shock, 
while the redistributed mesh gives better result. One of the solution feature 
surfaces shown in Figure 7b  fits the bow shock well. 
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(a) (b)

Figure 10. Mach number distribution for the capsule model on the symmetry planes (M = 

1.0-4.0): (a) the initial mesh showing a carbuncle phenomenon; (b) the redistributed mesh. 

The most notable advantage of the surface-based mesh redistribution 
method is that anisotropic nonsimplicial elements can be used around the 
feature surfaces to avoid creating skewed elements. Figure 11  shows a re-
distributed hybrid mesh, which has 0.62 million nodes, based on the same 
numerical result. Prismatic layers are placed around the bow shock. The 
quality of the mesh is excellent as shown in the dihedral angle distribution 
(Figure 11b).

5. Conclusion and Future Work 

In this paper, we propose a solution-based mesh redistribution method for 
strong solution features. Solution features are indicated by a weight func-
tion and a shock sensor. The feature locations are estimated by medial axes 
of isosurfaces at a certain sensor value. To compute medial axes, two ap-
proaches are discussed. The discrete surface-based approach using a De-
launay triangulation method may not be suitable to estimate solution fea-
tures as smooth surfaces. The mathematical-representation approach using 
least square fitting can represent solution features easily and can interpo-
late missing features due to truncation errors. The remeshing method with 
embedded surfaces enables anisotropic nonsimplicial elements to be 
placed around the features to avoid creating skewed elements. 
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(a)

(b)

Figure 11. Redistributed mesh for a capsule model using anisotropic elements: (a) hybrid 

mesh; (b) dihedral angle distribution of the mesh. 

The proposed approach, however, does not work well if a solution fea-
ture is difficult to be represented as a single surface, such as vortex break-
down. In future work, the solution-based mesh redistribution method will 
be combined with a mesh refinement method [3] to adapt a mesh to all the 
solution features efficiently [21]. 
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